ESAME DI STATO PER L'ABILITAZIONE ALLA LIBERA PROFESSIONE DI INGEGNERE

1ª SESSIONE 2017- NOVEMBRE (INGEGNERIA - CIVILE – EDILE - ARCHITETTURA) laurea specialistica magistrale (SEZ. A)

1^a prova

Il Candidato deve riferire in generale sul risparmio energetico riferendosi a varie tipologie e destinazioni dell'edilizia, sia di nuovo che di antico impianto, queste ultime recenti o storiche.

Si deve fare anche riferimento alle fonti di energia alternative.

Si avvalga il Candidato eventualmente anche di schemi grafici, se ritiene opportuno.

ESAME DI STATO PER L'ABILITAZIONE ALLA LIBERA PROFESSIONE DI INGEGNERE

1ª SESSIONE 2017- NOVEMBRE (INGEGNERIA - CIVILE – EDILE - ARCHITETTURA) laurea specialistica magistrale (SEZ. A)

2^a prova

Devono essere descritte e rappresentate graficamente le più significative tipologie edilizie a destinazione residenziale, ciascuna nel proprio "lotto ideale" in termini di dimensione, di orientamento, di accessibilità, di distribuzione interna (giorno – notte), di ubicazione interna al lotto stesso.

Si avvalga il Candidato degli schemi di rappresentazione che ritiene opportuni e significativi.

In una sintetica relazione, per ciascuna tipologia rappresentata negli schemi, si mettano in evidenza le caratteristiche anche in termini di organizzazione strutturale.

ESAME DI STATO PER L'ABILITAZIONE ALLA LIBERA PROFESSIONE DI INGEGNERE

2^a SESSIONE 2017- NOVEMBRE (INGEGNERIA - CIVILE AMBIENTALE – EDILE ARCHITETTURA) <u>laurea magistrale specialistic a (SEZ. A)</u>

3ª prova (pratica)

Si progetti un edificio con destinazione **pubblico esercizio** (bar e piccolo ristorante) in un ambito a scelta del Candidato.

E' quindi richiesto di rappresentare i seguenti elaborati grafici, nella scala ritenuta più opportuna:

- la pianta
- una sezione significativa (anche parziale)
- il prospetto principale, oppure un'assonometria
- una ipotetica sistemazione esterna (lotto ideale riguardo orientamento, ingressi, verde, percorsi)

E' richiesta inoltre una *relazione* sintetica, in cui devono essere illustrate le scelte progettuali riguardo gli aspetti normativi, gli aspetti distributivi, l'organizzazione strutturale generale, l'involucro edilizio.

Commissione per gli esami di Stato di abilitazione all'esercizio della professione di Ingegnere

SECONDA SESSIONE 2017

Prima Prova – Sezione A – Settore dell'ingegneria industriale – Classe delle Lauree magistrali in Ingegneria Industriale

TEMA:

Il candidato identifichi e discuta sull'applicazione di alcune tecnologie abilitanti (Advanced manufacturing solution, Additive manufacturing, Augmented reality, Simulation, Horizontal e vertical integration, Industrial internet, Cloud, Cyber-security e Big Data Analytics) nella realtà industriale di competenza.

Commissione per gli esami di Stato di abilitazione all'esercizio della professione di Ingegnere

SECONDA SESSIONE 2017

Seconda Prova – Sezione A – Settore dell'ingegneria industriale – Classe delle Lauree magistrali in Ingegneria Industriale (curriculum gestionale)

TEMA1:

Definire gli input e gli output e la caratterizzazione del Material Requirement Planning

TEMA:

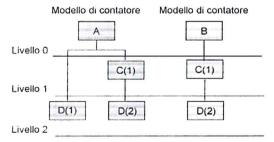
Definire i problemi di schedulazione e le dispatching rules che si conoscono.

Commissione per gli esami di Stato di abilitazione all'esercizio della professione di Ingegnere

SECONDA SESSIONE 2017

Terza Prova – Sezione A – Settore dell'ingegneria industriale – Classe delle Lauree magistrali in Ingegneria Industriale (curriculum gestionale)

TEMA 1:


Un'azienda produce una linea di tavoli per ufficio che si caratterizza per 2 modelli base; in aggiunta al tavolo completo, l'azienda vende separatamente certe sotto-unità, da usare per le riparazioni. Il fabbisogno dei tavoli A e B e di parti D su un periodo di 3 mesi (dal mese 3 al 5) è quello riportato in tabella:

Mese	Futuro fabbisogno derivante da ordini dei clienti e da fonti casuali						
Wiese	Tavolo A		Tavolo B		Componente D		
	Conosciuto	Casuale	Conosciuto	Casuale	Conosciuto	Casuale	
3	1.000	250	410	60	200	70	
4	600	250	300	60	180	70	
5	3(10)	250	500	60	250	70	

Si assuma che le quantità per coprire la domanda conosciuta e quella casuale debbano essere disponibili nella prima settimana del mese; questo consente di riportare un'ipotesi di MPS secondo quanto riportato nella tabella; la domanda dei mesi 3, 4 e 5 si colloca nella prima settimana di ogni mese, ovvero nelle settimane 9, 13 e 17. Per brevità si lavorerà con la domanda della settimana 9.

		Settimana								
MPS coerente con il fabbisogno	9	Įo	11	12	13	14	15	16	17	
Tavolo A	1 250				850				550	
Tavolo B	470				360				560	
Componente D	270				250				320	

La struttura di prodotto dei tavoli A e B secondo la codifica di livello minimo è la seguente:

Le scorte disponibili all'avvio del MRP, il fabbisogno di scorte di sicurezza e lo stato attuale degli ordini già emessi è quello riportato in tabella:

Articolo	Scorte disponibili	Lead time (settimane)	Scorta di sicurezza	Unita ordinate
Λ	50	2	Ü .	
В	60	2	0	10 (settimana 5)
C	40	1	.5	
D	200	1	20	[00 (settimana 4)

L'MPS ha indicato il fabbisogno di prodotto finito; si conosce lo stato delle scorte e i lead time, e si dispone dei dati inerenti la struttura di prodotto. Si può ora fare i calcoli dell'MRP dall'alto verso il basso, di livello in livello, facendo riferimento ai dati di magazzino, congiuntamente ai dati dell'MPS.

Si deve determinare l'MRP considerando per ogni settimana: fabbisogno lordo, quantità programmate in arrivo, giacenze disponibili previste, fabbisogno netto, piano degli ordini alla data di consegna e piano ordini data emissione per gli articoli A, B, C e D.

TEMA 2: Problema di schedulazione 1//min∑Ti wi

Job	Pi	di	wi
J1	41	64	5
J2	18	21	1
J3	25	50	1
J4	33	34	8
J5	10	35	5

dove:

Pi: tempi di processo;

di: due date;

wi: penalty.

Scegliere la Dispatching Rule e determinare inoltre:

- Makespan,
- Minimo Total Completion time: min∑Ci
- Max Lateness
- N° of Tardi Jobs

Costruire la Dispatching table e tracciare il diagramma di Gantt.

Commissione per gli esami di Stato di abilitazione all'esercizio della professione di Ingegnere

SECONDA SESSIONE 2017

Seconda Prova – Sezione A – Settore dell'ingegneria industriale – Classe delle Lauree magistrali in Ingegneria Industriale (curriculum meccanica)

TEMA 1:

Criteri di dimensionamento di un impianto di aria compressa

TEMA 2:

Criteri per la verifica di resistenza di un componente meccanico

Commissione per gli esami di Stato di abilitazione all'esercizio della professione di Ingegnere

SEDONDA SESSIONE 2017

Terza Prova – Sezione A – Settore dell'ingegneria industriale – Classe delle Lauree magistrali in Ingegneria Industriale (curriculum meccanica)

TEMA 1:

Dimensionare un impianto di servizio di aria compressa a cinque utensili pneumatici aventi le seguenti caratteristiche: diametro del cilindro operatore 50 mm, corsa del pistone 60 mm, numero di colpi al minuto 1200 colpi/minuto e pressione di esercizio7 bar. Il collettore di distribuzione è lungo 70 m.

Si determini:

- consumo di aria e portata del compressore;
- dimensione delle condotte di aspirazione, di congiunzione tra il compressore e il serbatoio, e di congiunzione tra il serbatoio e le utenze;
- rendimento dell'impianto.

I dati mancanti possono essere assunti e giustificati dal candidato.

TEMA 2:

Eseguire la verifica di resistenza di un componente che ha distribuzione dei carichi (250; 50)MPa, realizzato in un acciaio la cui resistenza nelle condizioni di esercizio è 430-450 MPa.

Si determini:

- 1. il coefficiente di sicurezza, assumendo per resistenza e carico i valori caratteristici secondo il metodo degli stati limite e cioè carico massimo corrispondente al percentile 98% e resistenza corrispondente al percentile 5%.
- 2. il safety margin
- 3. la loading roughness
- 4. la probabilità di rottura

Commissione per gli esami di Stato di abilitazione all'esercizio della professione di Ingegnere

SECONDA SESSIONE 2017

Sezione A

Prova pratica relativa alle materie caratterizzanti la classe di Laurea LM23, Indirizzo Strutture

Il Candidato progetti la struttura destinata a realizzare un sovrappasso coperto in comune di Ronchi dei Legionari (UD).

La struttura, di luce netta pari a 15m e impalcato di 4m di larghezza, è intesa quale collegamento coperto pedonale tra due edifici esistenti, appartenenti al nuovo aeroporto FVG.

È lasciata al Candidato la scelta di materiali, tipologia costruttiva, schema statico, purché adeguatamente giustificata.

Nella redazione del progetto si tenga conto che:

- l'altezza netta della struttura coperta dovrà essere di 3m
- il piano di calpestio del sovrappasso sarà posto alla quota di 4m
- l'altezza tra intradosso del sovrappasso e il sottostante piano stradale dovrà essere di almeno 3m
- alle estremità, la struttura poggerà su muri esistenti già predisposti per accogliere il collegamento pedonale

Ai fini della valutazione dell'elaborato, il progetto dovrà prevedere:

- predimensionamento e verifiche strutturali
- disegni dei principali dettagli costruttivi della struttura, vincoli inclusi, in opportuna scala
- breve relazione tecnica illustrante in modo sintetico ma esaustivo le scelte progettuali (materiali, schemi statici, metodi di calcolo, criteri di verifica)

Tutti i disegni possono essere eseguiti a matita e a mano libera.

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE

Classe Laurea Magistrale in INGEGNERIA ELETTRICA (LM 28)

Novembre 2017

Seconda prova scritta:

Il candidato illustri il contesto dell'industria elettrica nazionale nel quadro evolutivo dettato dalla penetrazione degli impianti di produzione dell'energia elettrica da fonti rinnovabili, con particolare riferimento ai temi della gestione e controllo delle reti elettriche.

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI

INGEGNERE

Classe Laurea Magistrale in INGEGNERIA ELETTRICA (LM 28)

Novembre 2017

Prova pratica:

Tema di COSTRUZIONI ELETTROMECCANICHE

Si esegua la <u>sola progettazione geometrica</u> di un: motore asincrono trifase avvolto secondo le seguenti specifiche:

- Servizio continuo (S1);
- Classe H:
- Potenza nominale: Pn=500 kW;
- Tensione nominale: Vn=3300 V;
- Frequenza nominale della tensione di alimentazione: f=50 Hz;
- Numero di poli: 2p=4;
- Collegamento delle fasi: Y-y;
- Rendimento nominale: η=0.95;
- Cosφ_n a pieno carico=0.87;
- Rapporto Coppia massima / Coppia nominale: Cmax/Cn=2.8;
- Grado di protezione: IP22;
- Sistema di raffreddamento: macchina auto ventilata.

Si corredi il progetto con disegni quotati e/o schizzi di accompagnamento.

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI

INGEGNERE

Classe Laurea Magistrale in INGEGNERIA ELETTRICA (LM 28)

Novembre 2017

Prova pratica:

Tema di SISTEMI ELETTRICI PER L'ENERGIA

Il candidato progetti i regolatori di tensione (funzione di trasferimento, statismo permanente, ecc.) corredati delle principali funzionalità relative ai moderni sistemi di controllo dell'eccitazione e sistemi automatici per la regolazione della tensione per i seguenti gruppi di produzione, immaginati inseriti in un grande sistema elettrico, dove funzionano in parallelo con molti altri generatori:

- 1) Gruppo con turbina a vapore, potenza nominale 360 MW, di una centrale a carbone per funzionamento di base;
- 2) Gruppo con turbina a gas di potenza nominale 300 MW, di una moderna centrale a ciclo combinato adatta per funzionamento modulato;
- 3) Gruppo con turbina a gas di potenza nominale 300 MW, di una moderna centrale a ciclo combinato adatta per funzionamento modulato;

Il candidato discuta e giustifichi le scelte progettuali effettuate.

Assumendo che una centrale sia costituita dal ciclo combinato formati dai gruppi turbogas 2) e 3) e dal gruppo turbovapore 1), si tracci la possibile disposizione planimetrica della sala macchine e lo schema elettrico unifilare della stazione elettrica connessa, fornendo eventualmente gli elementi progettuali del macchinario (turbine, alternatori, sistemi di eccitazione, trasformatori, interruttori e sezionatori) ritenuti più significativi.

Il candidato ha facoltà di assumere il valore di ogni altro dato ritenuto utile per lo svolgimento del tema.